Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Diagnostics (Basel) ; 13(6)2023 03 17.
Artículo en Inglés | MEDLINE | ID: covidwho-2261019

RESUMEN

Subcutaneous emphysema, pneumothorax and pneumomediastinum are well-known complications of invasive ventilation in patients with acute hypoxemic respiratory failure. We determined the incidences of air leaks that were visible on available chest images in a cohort of critically ill patients with acute hypoxemic respiratory failure due to coronavirus disease of 2019 (COVID-19) in a single-center cohort in the Netherlands. A total of 712 chest images from 154 patients were re-evaluated by a multidisciplinary team of independent assessors; there was a median of three (2-5) chest radiographs and a median of one (1-2) chest CT scans per patient. The incidences of subcutaneous emphysema, pneumothoraxes and pneumomediastinum present in 13 patients (8.4%) were 4.5%, 4.5%, and 3.9%. The median first day of the presence of an air leak was 18 (2-21) days after arrival in the ICU and 18 (9-22)days after the start of invasive ventilation. We conclude that the incidence of air leaks was high in this cohort of COVID-19 patients, but it was fairly comparable with what was previously reported in patients with acute hypoxemic respiratory failure in the pre-COVID-19 era.

2.
Crit Care ; 26(1): 363, 2022 11 25.
Artículo en Inglés | MEDLINE | ID: covidwho-2139382

RESUMEN

BACKGROUND: Patients with COVID-19-related acute respiratory distress syndrome (ARDS) require respiratory support with invasive mechanical ventilation and show varying responses to recruitment manoeuvres. In patients with ARDS not related to COVID-19, two pulmonary subphenotypes that differed in recruitability were identified using latent class analysis (LCA) of imaging and clinical respiratory parameters. We aimed to evaluate if similar subphenotypes are present in patients with COVID-19-related ARDS. METHODS: This is the retrospective analysis of mechanically ventilated patients with COVID-19-related ARDS who underwent CT scans at positive end-expiratory pressure of 10 cmH2O and after a recruitment manoeuvre at 20 cmH2O. LCA was applied to quantitative CT-derived parameters, clinical respiratory parameters, blood gas analysis and routine laboratory values before recruitment to identify subphenotypes. RESULTS: 99 patients were included. Using 12 variables, a two-class LCA model was identified as best fitting. Subphenotype 2 (recruitable) was characterized by a lower PaO2/FiO2, lower normally aerated lung volume and lower compliance as opposed to a higher non-aerated lung mass and higher mechanical power when compared to subphenotype 1 (non-recruitable). Patients with subphenotype 2 had more decrease in non-aerated lung mass in response to a standardized recruitment manoeuvre (p = 0.024) and were mechanically ventilated longer until successful extubation (adjusted SHR 0.46, 95% CI 0.23-0.91, p = 0.026), while no difference in survival was found (p = 0.814). CONCLUSIONS: A recruitable and non-recruitable subphenotype were identified in patients with COVID-19-related ARDS. These findings are in line with previous studies in non-COVID-19-related ARDS and suggest that a combination of imaging and clinical respiratory parameters could facilitate the identification of recruitable lungs before the manoeuvre.


Asunto(s)
COVID-19 , Síndrome de Dificultad Respiratoria , Humanos , Análisis de Clases Latentes , Estudios Retrospectivos , COVID-19/complicaciones , Síndrome de Dificultad Respiratoria/diagnóstico por imagen , Respiración con Presión Positiva/métodos
3.
Diagnostics (Basel) ; 12(9)2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: covidwho-2005961

RESUMEN

BACKGROUND: Quantitative radiological scores for the extent and severity of pulmonary infiltrates based on chest radiography (CXR) and computed tomography (CT) scan are increasingly used in critically ill invasively ventilated patients. This study aimed to determine and compare the prognostic capacity of the Radiographic Assessment of Lung Edema (RALE) score and the chest CT Severity Score (CTSS) in a cohort of invasively ventilated patients with acute respiratory distress syndrome (ARDS) due to COVID-19. METHODS: Two-center retrospective observational study, including consecutive invasively ventilated COVID-19 patients. Trained scorers calculated the RALE score of first available CXR and the CTSS of the first available CT scan. The primary outcome was ICU mortality; secondary outcomes were duration of ventilation in survivors, length of stay in ICU, and hospital-, 28-, and 90-day mortality. Prognostic accuracy for ICU death was expressed using odds ratios and Area Under the Receiver Operating Characteristic curves (AUROC). RESULTS: A total of 82 patients were enrolled. The median RALE score (22 [15-37] vs. 26 [20-39]; p = 0.34) and the median CTSS (18 [16-21] vs. 21 [18-23]; p = 0.022) were both lower in ICU survivors compared to ICU non-survivors, although only the difference in CTSS reached statistical significance. While no association was observed between ICU mortality and RALE score (OR 1.35 [95%CI 0.64-2.84]; p = 0.417; AUC 0.50 [0.44-0.56], this was noticed with the CTSS (OR, 2.31 [1.22-4.38]; p = 0.010) although with poor prognostic capacity (AUC 0.64 [0.57-0.69]). The correlation between the RALE score and CTSS was weak (r2 = 0.075; p = 0.012). CONCLUSIONS: Despite poor prognostic capacity, only CTSS was associated with ICU mortality in our cohort of COVID-19 patients.

4.
Front Med (Lausanne) ; 8: 772056, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1650404

RESUMEN

Background: The radiographic assessment for lung edema (RALE) score has an association with mortality in patients with acute respiratory distress syndrome (ARDS). It is uncertain whether the RALE scores at the start of invasive ventilation or changes thereof in the next days have prognostic capacities in patients with COVID-19 ARDS. Aims and Objectives: To determine the prognostic capacity of the RALE score for mortality and duration of invasive ventilation in patients with COVID-19 ARDS. Methods: An international multicenter observational study included consecutive patients from 6 ICUs. Trained observers scored the first available chest X-ray (CXR) obtained within 48 h after the start of invasive ventilation ("baseline CXR") and each CXRs thereafter up to day 14 ("follow-up CXR"). The primary endpoint was mortality at day 90. The secondary endpoint was the number of days free from the ventilator and alive at day 28 (VFD-28). Results: A total of 350 CXRs were scored in 139 patients with COVID-19 ARDS. The RALE score of the baseline CXR was high and was not different between survivors and non-survivors (33 [24-38] vs. 30 [25-38], P = 0.602). The RALE score of the baseline CXR had no association with mortality (hazard ratio [HR], 1.24 [95% CI 0.88-1.76]; P = 0.222; area under the receiver operating characteristic curve (AUROC) 0.50 [0.40-0.60]). A change in the RALE score over the first 14 days of invasive ventilation, however, had an independent association with mortality (HR, 1.03 [95% CI 1.01-1.05]; P < 0.001). When the event of death was considered, there was no significant association between the RALE score of the baseline CXR and the probability of being liberated from the ventilator (HR 1.02 [95% CI 0.99-1.04]; P = 0.08). Conclusion: In this cohort of patients with COVID-19 ARDS, with high RALE scores of the baseline CXR, the RALE score of the baseline CXR had no prognostic capacity, but an increase in the RALE score in the next days had an association with higher mortality.

5.
J Thromb Thrombolysis ; 52(4): 1068-1073, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: covidwho-1525577

RESUMEN

COVID-19 patients have increased risk of pulmonary embolism (PE), but symptoms of both conditions overlap. Because screening algorithms for PE in COVID-19 patients are currently lacking, PE might be underdiagnosed. We evaluated a screening algorithm in which all patients presenting to the ED with suspected or confirmed COVID-19 routinely undergo D-dimer testing, followed by CT pulmonary angiography (CTPA) if D-dimer is ≥ 1.00 mg/L. Consecutive adult patients presenting to the ED of two university hospitals in Amsterdam, The Netherlands, between 01-10-2020 and 31-12-2020, who had a final diagnosis of COVID-19, were retrospectively included. D-dimer and CTPA results were obtained. Of 541 patients with a final diagnosis of COVID-19 presenting to the ED, 25 (4.6%) were excluded because D-dimer was missing, and 71 (13.1%) because they used anticoagulation therapy. Of 445 included patients, 185 (41.6%; 95%CI 37.0-46.3) had a D-dimer ≥ 1.00 mg/L. CTPA was performed in 169 of them, which showed PE in 26 (15.4%; 95%CI 10.3-21.7), resulting in an overall detection rate of 5.8% (95%CI 3.9-8.4) in the complete study group. In patients with and without PE at CTPA, median D-dimer was 9.84 (IQR 3.90-29.38) and 1.64 (IQR 1.17-3.01), respectively (p < 0.001). PE prevalence increased with increasing D-dimer, ranging from 1.2% (95%CI 0.0-6.4) if D-dimer was 1.00-1.99 mg/L, to 48.6% (95%CI 31.4-66.0) if D-dimer was ≥ 5.00 mg/L. In conclusion, by applying this screening algorithm, PE was identified in a considerable proportion of COVID-19 patients. Prospective management studies should assess if this algorithm safely rules-out PE if D-dimer is < 1.00 mg/L.


Asunto(s)
COVID-19 , Productos de Degradación de Fibrina-Fibrinógeno/análisis , Embolia Pulmonar , Adulto , Angiografía , COVID-19/complicaciones , Servicio de Urgencia en Hospital , Humanos , Países Bajos , Embolia Pulmonar/diagnóstico por imagen , Estudios Retrospectivos
6.
J Thorac Imaging ; 36(5): 286-293, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1440700

RESUMEN

PURPOSE: Patients with novel coronavirus disease (COVID-19) frequently develop acute respiratory distress syndrome (ARDS) and need invasive ventilation. The potential to reaerate consolidated lung tissue in COVID-19-related ARDS is heavily debated. This study assessed the potential to reaerate lung consolidations in patients with COVID-19-related ARDS under invasive ventilation. MATERIALS AND METHODS: This was a retrospective analysis of patients with COVID-19-related ARDS who underwent chest computed tomography (CT) at low positive end-expiratory pressure (PEEP) and after a recruitment maneuver at high PEEP of 20 cm H2O. Lung reaeration, volume, and weight were calculated using both CT scans. CT scans were performed after intubation and start of ventilation (early CT), or after several days of intensive care unit admission (late CT). RESULTS: Twenty-eight patients were analyzed. The median percentages of reaerated and nonaerated lung tissue were 19% [interquartile range, IQR: 10 to 33] and 11% [IQR: 4 to 15] for patients with early and late CT scans, respectively (P=0.049). End-expiratory lung volume showed a median increase of 663 mL [IQR: 483 to 865] and 574 mL [IQR: 292 to 670] after recruitment for patients with early and late CT scans, respectively (P=0.43). The median decrease in lung weight attributed to nonaerated lung tissue was 229 g [IQR: 165 to 376] and 171 g [IQR: 81 to 229] after recruitment for patients with early and late CT scans, respectively (P=0.16). CONCLUSIONS: The majority of patients with COVID-19-related ARDS undergoing invasive ventilation had substantial reaeration of lung consolidations after recruitment and ventilation at high PEEP. Higher PEEP can be considered in patients with reaerated lung consolidations when accompanied by improvement in compliance and gas exchange.


Asunto(s)
COVID-19 , Síndrome de Dificultad Respiratoria , COVID-19/diagnóstico por imagen , COVID-19/terapia , Femenino , Humanos , Pulmón/diagnóstico por imagen , Masculino , Persona de Mediana Edad , Respiración con Presión Positiva , Síndrome de Dificultad Respiratoria/diagnóstico por imagen , Síndrome de Dificultad Respiratoria/terapia , Estudios Retrospectivos , Tomografía Computarizada por Rayos X
8.
Radiology ; 298(1): E18-E28, 2021 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1029186

RESUMEN

Background The coronavirus disease 2019 (COVID-19) pandemic has spread across the globe with alarming speed, morbidity, and mortality. Immediate triage of patients with chest infections suspected to be caused by COVID-19 using chest CT may be of assistance when results from definitive viral testing are delayed. Purpose To develop and validate an artificial intelligence (AI) system to score the likelihood and extent of pulmonary COVID-19 on chest CT scans using the COVID-19 Reporting and Data System (CO-RADS) and CT severity scoring systems. Materials and Methods The CO-RADS AI system consists of three deep-learning algorithms that automatically segment the five pulmonary lobes, assign a CO-RADS score for the suspicion of COVID-19, and assign a CT severity score for the degree of parenchymal involvement per lobe. This study retrospectively included patients who underwent a nonenhanced chest CT examination because of clinical suspicion of COVID-19 at two medical centers. The system was trained, validated, and tested with data from one of the centers. Data from the second center served as an external test set. Diagnostic performance and agreement with scores assigned by eight independent observers were measured using receiver operating characteristic analysis, linearly weighted κ values, and classification accuracy. Results A total of 105 patients (mean age, 62 years ± 16 [standard deviation]; 61 men) and 262 patients (mean age, 64 years ± 16; 154 men) were evaluated in the internal and external test sets, respectively. The system discriminated between patients with COVID-19 and those without COVID-19, with areas under the receiver operating characteristic curve of 0.95 (95% CI: 0.91, 0.98) and 0.88 (95% CI: 0.84, 0.93), for the internal and external test sets, respectively. Agreement with the eight human observers was moderate to substantial, with mean linearly weighted κ values of 0.60 ± 0.01 for CO-RADS scores and 0.54 ± 0.01 for CT severity scores. Conclusion With high diagnostic performance, the CO-RADS AI system correctly identified patients with COVID-19 using chest CT scans and assigned standardized CO-RADS and CT severity scores that demonstrated good agreement with findings from eight independent observers and generalized well to external data. © RSNA, 2020 Supplemental material is available for this article.


Asunto(s)
Inteligencia Artificial , COVID-19/diagnóstico por imagen , Índice de Severidad de la Enfermedad , Tórax/diagnóstico por imagen , Tomografía Computarizada por Rayos X , Anciano , Sistemas de Datos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proyectos de Investigación , Estudios Retrospectivos
9.
Radiology ; 298(2): E98-E106, 2021 02.
Artículo en Inglés | MEDLINE | ID: covidwho-930398

RESUMEN

Background Clinicians need to rapidly and reliably diagnose coronavirus disease 2019 (COVID-19) for proper risk stratification, isolation strategies, and treatment decisions. Purpose To assess the real-life performance of radiologist emergency department chest CT interpretation for diagnosing COVID-19 during the acute phase of the pandemic, using the COVID-19 Reporting and Data System (CO-RADS). Materials and Methods This retrospective multicenter study included consecutive patients who presented to emergency departments in six medical centers between March and April 2020 with moderate to severe upper respiratory symptoms suspicious for COVID-19. As part of clinical practice, chest CT scans were obtained for primary work-up and scored using the five-point CO-RADS scheme for suspicion of COVID-19. CT was compared with severe acute respiratory syndrome coronavirus 2 reverse-transcription polymerase chain reaction (RT-PCR) assay and a clinical reference standard established by a multidisciplinary group of clinicians based on RT-PCR, COVID-19 contact history, oxygen therapy, timing of RT-PCR testing, and likely alternative diagnosis. Performance of CT was estimated using area under the receiver operating characteristic curve (AUC) analysis and diagnostic odds ratios against both reference standards. Subgroup analysis was performed on the basis of symptom duration grouped presentations of less than 48 hours, 48 hours through 7 days, and more than 7 days. Results A total of 1070 patients (median age, 66 years; interquartile range, 54-75 years; 626 men) were included, of whom 536 (50%) had a positive RT-PCR result and 137 (13%) of whom were considered to have a possible or probable COVID-19 diagnosis based on the clinical reference standard. Chest CT yielded an AUC of 0.87 (95% CI: 0.84, 0.89) compared with RT-PCR and 0.87 (95% CI: 0.85, 0.89) compared with the clinical reference standard. A CO-RADS score of 4 or greater yielded an odds ratio of 25.9 (95% CI: 18.7, 35.9) for a COVID-19 diagnosis with RT-PCR and an odds ratio of 30.6 (95% CI: 21.1, 44.4) with the clinical reference standard. For symptom duration of less than 48 hours, the AUC fell to 0.71 (95% CI: 0.62, 0.80; P < .001). Conclusion Chest CT analysis using the coronavirus disease 2019 (COVID-19) Reporting and Data System enables rapid and reliable diagnosis of COVID-19, particularly when symptom duration is greater than 48 hours. © RSNA, 2020 Online supplemental material is available for this article. See also the editorial by Elicker in this issue.


Asunto(s)
COVID-19/diagnóstico por imagen , Servicio de Urgencia en Hospital , Pulmón/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Países Bajos , Estudios Retrospectivos , SARS-CoV-2 , Sensibilidad y Especificidad
12.
Radiology ; 296(2): E97-E104, 2020 08.
Artículo en Inglés | MEDLINE | ID: covidwho-683271

RESUMEN

Background A categorical CT assessment scheme for suspicion of pulmonary involvement of coronavirus disease 2019 (COVID-19 provides a basis for gathering scientific evidence and improved communication with referring physicians. Purpose To introduce the COVID-19 Reporting and Data System (CO-RADS) for use in the standardized assessment of pulmonary involvement of COVID-19 on unenhanced chest CT images and to report its initial interobserver agreement and performance. Materials and Methods The Dutch Radiological Society developed CO-RADS based on other efforts for standardization, such as the Lung Imaging Reporting and Data System or Breast Imaging Reporting and Data System. CO-RADS assesses the suspicion for pulmonary involvement of COVID-19 on a scale from 1 (very low) to 5 (very high). The system is meant to be used in patients with moderate to severe symptoms of COVID-19. The system was evaluated by using 105 chest CT scans of patients admitted to the hospital with clinical suspicion of COVID-19 and in whom reverse transcription-polymerase chain reaction (RT-PCR) was performed (mean, 62 years ± 16 [standard deviation]; 61 men, 53 with positive RT-PCR results). Eight observers used CO-RADS to assess the scans. Fleiss κ value was calculated, and scores of individual observers were compared with the median of the remaining seven observers. The resulting area under the receiver operating characteristics curve (AUC) was compared with results from RT-PCR and clinical diagnosis of COVID-19. Results There was absolute agreement among observers in 573 (68.2%) of 840 observations. Fleiss κ value was 0.47 (95% confidence interval [CI]: 0.45, 0.47), with the highest κ value for CO-RADS categories 1 (0.58, 95% CI: 0.54, 0.62) and 5 (0.68, 95% CI: 0.65, 0.72). The average AUC was 0.91 (95% CI: 0.85, 0.97) for predicting RT-PCR outcome and 0.95 (95% CI: 0.91, 0.99) for clinical diagnosis. The false-negative rate for CO-RADS 1 was nine of 161 cases (5.6%; 95% CI: 1.0%, 10%), and the false-positive rate for CO-RADS category 5 was one of 286 (0.3%; 95% CI: 0%, 1.0%). Conclusion The coronavirus disease 2019 (COVID-19) Reporting and Data System (CO-RADS) is a categorical assessment scheme for pulmonary involvement of COVID-19 at unenhanced chest CT that performs very well in predicting COVID-19 in patients with moderate to severe symptoms and has substantial interobserver agreement, especially for categories 1 and 5. © RSNA, 2020 Online supplemental material is available for this article.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus/diagnóstico por imagen , Neumonía Viral/diagnóstico por imagen , Tomografía Computarizada por Rayos X/normas , Adulto , Anciano , COVID-19 , Comunicación , Femenino , Humanos , Pulmón/diagnóstico por imagen , Masculino , Persona de Mediana Edad , Países Bajos , Variaciones Dependientes del Observador , Pandemias , Sistemas de Información Radiológica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , SARS-CoV-2 , Tomografía Computarizada por Rayos X/métodos
13.
J Thromb Haemost ; 18(8): 1995-2002, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: covidwho-186482

RESUMEN

BACKGROUND: Coronavirus disease 2019 (COVID-19) can lead to systemic coagulation activation and thrombotic complications. OBJECTIVES: To investigate the incidence of objectively confirmed venous thromboembolism (VTE) in hospitalized patients with COVID-19. METHODS: Single-center cohort study of 198 hospitalized patients with COVID-19. RESULTS: Seventy-five patients (38%) were admitted to the intensive care unit (ICU). At time of data collection, 16 (8%) were still hospitalized and 19% had died. During a median follow-up of 7 days (IQR, 3-13), 39 patients (20%) were diagnosed with VTE of whom 25 (13%) had symptomatic VTE, despite routine thrombosis prophylaxis. The cumulative incidences of VTE at 7, 14 and 21 days were 16% (95% CI, 10-22), 33% (95% CI, 23-43) and 42% (95% CI 30-54) respectively. For symptomatic VTE, these were 10% (95% CI, 5.8-16), 21% (95% CI, 14-30) and 25% (95% CI 16-36). VTE appeared to be associated with death (adjusted HR, 2.4; 95% CI, 1.02-5.5). The cumulative incidence of VTE was higher in the ICU (26% (95% CI, 17-37), 47% (95% CI, 34-58), and 59% (95% CI, 42-72) at 7, 14 and 21 days) than on the wards (any VTE and symptomatic VTE 5.8% (95% CI, 1.4-15), 9.2% (95% CI, 2.6-21), and 9.2% (2.6-21) at 7, 14, and 21 days). CONCLUSIONS: The observed risk for VTE in COVID-19 is high, particularly in ICU patients, which should lead to a high level of clinical suspicion and low threshold for diagnostic imaging for DVT or PE. Future research should focus on optimal diagnostic and prophylactic strategies to prevent VTE and potentially improve survival.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus/sangre , Pandemias , Neumonía Viral/sangre , Embolia Pulmonar/epidemiología , Tromboembolia Venosa/epidemiología , Trombosis de la Vena/epidemiología , Anciano , Anticoagulantes/uso terapéutico , Biomarcadores , COVID-19 , Cateterismo Venoso Central/efectos adversos , Infecciones por Coronavirus/complicaciones , Femenino , Productos de Degradación de Fibrina-Fibrinógeno/análisis , Humanos , Incidencia , Unidades de Cuidados Intensivos/estadística & datos numéricos , Masculino , Persona de Mediana Edad , Países Bajos/epidemiología , Habitaciones de Pacientes/estadística & datos numéricos , Neumonía Viral/complicaciones , Embolia Pulmonar/sangre , Embolia Pulmonar/diagnóstico por imagen , Embolia Pulmonar/etiología , Estudios Retrospectivos , Factores de Riesgo , SARS-CoV-2 , Trombofilia/tratamiento farmacológico , Trombofilia/etiología , Tromboflebitis/epidemiología , Tromboflebitis/etiología , Tromboembolia Venosa/sangre , Tromboembolia Venosa/diagnóstico por imagen , Tromboembolia Venosa/etiología , Trombosis de la Vena/sangre , Trombosis de la Vena/diagnóstico por imagen , Trombosis de la Vena/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA